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The �black box-ization� of interactions



The �black box-ization� of interactions



Computers good old days



Internet good old days



Today: �oracle�-like services





Turning point to the black box era

Input: user actions/data. Arbitrary processing: output/results

Users cannot access the data, history, algorithm...

Trust given to the remote service/algorithm,

while it has big interest in manipulating the outputs (e.g., ads)



Example 2: Recommendations (Gilles's talk)
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Example 3: Credit scoring

Nowadays: default prediction by models → score → decision

Data: thousands of factors, do you know/understand them all?



Example 4: From image classi�cation APIs ...



Example 4: ... to self driving cars

1

1. DeepXplore @ SOSP 2017





... to the infamous social credit



Our near future, the cybernetic dream?



Current solutions fail

Explainability: good only if you access the algorithm locally!

2

Transparency: �please trust me I am clean�

3

2. LIME: "Why Should I Trust You?": Explaining the Predictions of Any Classi�er, 2016

3. https://www.gouvernement.fr/argumentaire/le-gouvernement-publie-le-code-des-algorithmes-de-parcoursup
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Potentially adversarial algorithms: beware of �fair-washing�

4

4. Investigating Ad Transparency Mechanisms in Social Media: A Case Study of Facebook's Explanations, NDSS 2018
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Potentially adversarial algorithms: beware of �fair-washing�

The bouncer problem! 5

5. The bouncer problem: challenges for remote explainability, arXiv 2019



Researchers, hackers: we need audit algorithms

General framework for user-sided audits:

tweak craftable input
submit to the black-box
collect results
if enough to conclude on hypothesis: return
loop;

BUT assuming that the black-box can be adversarial

AND that the number of submissions must be small
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The black-box society looks quite real

From user-control of algorithms to algorithmic-control

Huge impact, close to no tools today to assess this

We need user-sided audit algorithms

Blend of security, data science, behavioural theory...



The case of recommendation

algorithms



Recommenders

Recommenders: �ltering tools for
items

Predict user tastes for items

Returns the most likely preferred
items

...



Recommender impact





Crawling



Crawling

...



Crawling

...



Crawling

...



Crawling

...
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Bias



What is bias ?

Di�cult to de�ne

Political (soft censorship)

Economical (maximise income)

Operational (serendipity)

Our de�nition:

Biasing edges= rewiring the graph of recommendations

Observation 1 Biased edges tangibly impact the graph structure

Observation 2 It is possible to detect such bias.



Dataset

k = 17 normal recommendations

k ′ = 2 "Recommended for you"
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Analogy: Locality model

Short links ↔
"locality"
"Homophily"

Long "random"
links ↔ weak ties

v
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A Toy Model

Objective: tune the level of bias introduced by the operator

R input

d

R ′ input

d ′
iRR′

item
s

features

iRR′ = 0 : Independent outputs, "maximum bias"

iRR′ = d = d ′ : No bias
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iRR′ = 0→

← iRR′ = d



Detecting biased edges



Detection - Approach
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YT dataset

The removal of 10% links has a drastic impact on path length
distribution

⇒ important links (wrt hop distance)

⇒ Betweenness centrality should do:

cB(e) =
∑
s,t∈V

σ(s, t|e)
σ(s, t)

∝ P(e ∈ Biased)
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Detection - Youtube
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Conclusion

Example application: bias detection

Bias "breaks" the recommender locality
Not so bad heuristic
User-local observation !

The topological face of recommendation, Complex Networks, 2017.

"Reverse engineering" remote black boxes

... Di�cult model but...

only answers to a few questions










